A6 | Fatma Moalla: First Tunisian Woman to earn Math Ph.D. in France

Do Now: Pythagorean Theorem

Fatma Moalla made extensive contributions to Finsler spaces. A Finsler space consists of manifolds whose length may be described by what is known as a Minkowski functional. Our goal is simple -- to understand the formula for the Minkowski functional:

$$
L(\gamma)=\int_{a}^{b} F(\gamma(x), \dot{\gamma}(x)) d t
$$

Minkowski Functional
We begin with something simpler: in the two problems below, find the distance between the two points, at first using subtraction, and then the distance formula.

Big Idea: Length of a Curve

We know how to find the length of a line, by using the distance formula to calculate the distance between its endpoints. But how can we find the length of a curve? Well, remember that a curve -when zoomed in -- is nothing but a line! Thus, we can simply use the pythagorean theorem, but modify it using calculus!

Now, simply integrate the hypotenuse from $x=a$ to $x=b$!

$$
\int_{a}^{b} \sqrt{d x^{2}+d y^{2}}
$$

Let's factor out $d x^{2}$:

$$
\int_{a}^{b} \sqrt{d x^{2}\left(1+\frac{d y^{2}}{d x^{2}}\right)}
$$

We can now pull out the $d x^{2}$ from the square root:

$$
\int_{a}^{b} d x \sqrt{1+\frac{d y^{2}}{d x^{2}}}
$$

And now, we are left with the formula for the length of a curve!

$$
\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \rightarrow \int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

The square root is no more than a function F, and what is it a function of? It is a function of the derivative of the curve $f^{\prime}(x)$! The derivative may also be written as $\dot{f}(x)$, where the dot on top of the f represents the first derivative. If we make these modifications, we see that the Minkowski functional is quite similar to the length of a curve!

$$
L(x)=\int_{a}^{b} F(\dot{f}(x)) d x \text { Length of Curve }
$$

$$
L(\gamma)=\int_{a}^{b} F(\gamma(x), \dot{\gamma}(x)) d t \text { Minkowski Functional }
$$

Use your newfound knowledge of the length of a curve to find the length of $y=x^{2}$ from $x=1$ to $x=3$. Note that $\int \csc ^{3} x d x=\frac{-\cot x^{*} \csc x-\ln (|\cot x+\csc x|)}{2}+C$.

$$
\int_{1}^{3} \sqrt{1+(2 x)^{2}} d x=\int_{1}^{3} \sqrt{1+4 x^{2}} d x
$$

We now factor out 4 from the square root, so as to make the coefficient of x^{2} one:

$$
\int_{1}^{3} \sqrt{4\left(\frac{1}{4}+x^{2}\right)} d x=\int_{1}^{3} 2 \sqrt{\frac{1}{4}+x^{2}} d x
$$

Now, make the substitution $x=\frac{1}{2} \cot \theta$ and $d x=-\frac{1}{2} \csc ^{2} \theta d \theta$.

$$
\int 2 \sqrt{\frac{1}{4}+\left(\frac{1}{2} \cot \theta\right)^{2}} *-\frac{1}{2} \csc ^{2} \theta d \theta=\int 2 \sqrt{\frac{1}{4}+\frac{1}{4} \cot ^{2} \theta} *-\frac{1}{2} \csc ^{2} \theta d \theta
$$

Factoring out $\frac{1}{4}$, we have:

$$
\int 2 \sqrt{\frac{1}{4}\left(1+\cot ^{2} \theta\right)} *-\frac{1}{2} \csc ^{2} \theta d \theta=\int 2 \frac{1}{2} \sqrt{1+\cot ^{2} \theta} *-\frac{1}{2} \csc ^{2} \theta d \theta
$$

Recall that $\sin ^{2} \theta+\cos ^{2} \theta=1$. Dividing both sides by $\sin ^{2} \theta$, we have $1+\cot ^{2} \theta=\csc ^{2} \theta$, which results in

$$
\int \csc \theta *-\frac{1}{2} \csc ^{2} \theta d \theta=-\frac{1}{2} \int \csc ^{3} \theta d \theta
$$

We are given this integral in the problem, which gives a final answer of

$$
\frac{\cot \theta^{*} \csc \theta+\ln (|\cot \theta+\csc \theta|)}{4}
$$

